organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Seik Weng Ng

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.059 wR factor = 0.141 Data-to-parameter ratio = 19.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(diisopropylammonium) 2,6-naphthalenedicarboxylate

In the title compound, $[{(CH_3)_2CH}_2NH_2]_2$ $[C_{10}H_6-2,6-(CO_2)_2]$, two ammonium $-NH_2$ groups interact with two carboxyl $-CO_2$ groups around an inversion center to give rise to a ten-membered $\leftarrow O-C-O\cdots H-N-H\cdots O-C-O\cdots H-N-H\leftarrow$ ring. As the dicarboxylato dianion also lies on an inversion center, a linear hydrogen-bonded chain structure is formed.

Received 17 June 2003 Accepted 20 June 2003 Online 30 June 2003

Comment

Dicyclohexylammonium monocarboxylates typically adopt an arrangement in which two $[R_2NH_2]^+$ cations are linked by hydrogen bonds to two $[R'CO_2]^-$ anions across a center of inversion, the arrangement giving rise to a ten-membered $\leftarrow O-C-O\cdots H-N-H\cdots O-C-O\cdots H-N-H\leftarrow$ ring (Ng, 1993, 1995, 1996, 1997; Ng & Hook, 1999; Subramanian *et al.*, 2000; Ng *et al.*, 2001); an exception is the trifluoroacetate, which adopts a chain structure (Ng *et al.*, 1999). For the corresponding dicarboxylic acid salts, only the adipate has been characterized, but the ammonium dicarboxylate crystallizes as a hydrate (Yang *et al.*, 2000), and it does not display the expected twin ten-membered-ring motif.

This motif is now documented in the bis(diisopropylammonium) salt of 2,6-naphthalenedicarboxylic acid, (I) (Fig. 1); the crystal structure of the parent acid is known from powder-diffraction measurements (Kaduk & Golab, 1999). $N-H \cdots O$ hydrogen bonds lead to the formation of a chain structure (Fig. 2 and Table 2) as the flat dicarboxylato dianion lies on an inversion center.

Experimental

Diisopropylamine (1 g, 10 mmol) was weighed into a beaker, and ethanol (20 ml) was poured into it. 2,6-Naphthalenedicarboxylic acid (1.1 g, 5 mmol) was added to the solution. The mixture was heated until the solid material that had formed dissolved completely. The solvent was allowed to evaporate over several days to furnish a tancolored syrup from which the desired colorless product separated as parallelepiped-shaped crystals.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Crystal data

 $\begin{array}{l} 2\text{C}_{6}\text{H}_{16}\text{N}^{+}\cdot\text{C}_{12}\text{H}_{6}\text{O}_{4}^{2-}\\ M_{r}=418.56\\ \text{Triclinic, } P\overline{1}\\ a=7.8718\ (7)\ \text{\AA}\\ b=8.5597\ (7)\ \text{\AA}\\ c=10.1327\ (9)\ \text{\AA}\\ \alpha=67.749\ (1)^{\circ}\\ \beta=88.179\ (1)^{\circ}\\ \gamma=75.389\ (1)^{\circ}\\ V=609.92\ (9)\ \text{\AA}^{3} \end{array}$

Data collection

Bruker AXS area-detector diffractometer φ and ω scans Absorption correction: none 5309 measured reflections 2756 independent reflections

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.059$	independent and constrained
$wR(F^2) = 0.141$	refinement
S = 0.72	$w = 1/[\sigma^2(F_o^2) + (0.0622P)^2]$
2756 reflections	where $P = (F_o^2 + 2F_c^2)/3$
144 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Z = 1

 $D_{\rm r} = 1.140 {\rm Mg} {\rm m}^{-3}$

Cell parameters from 1895

Parallelepiped, colorless

1084 reflections with $I > 2\sigma(I)$

 $0.30 \times 0.20 \times 0.20$ mm

Mo $K\alpha$ radiation

reflections

 $\mu = 0.08 \text{ mm}^{-1}$

T = 298 (2) K

 $R_{\rm int}=0.045$

 $\theta_{\rm max} = 28.3^\circ$

 $\begin{array}{l} h = -10 \rightarrow 10 \\ k = -11 \rightarrow 10 \end{array}$

 $l=-12\rightarrow 12$

 $\theta = 2.2 - 28.3^{\circ}$

Table 1

Selected geometric parameters (Å, °).

O1-C1	1.245 (3)	C4-C6 ⁱ	1.396 (3)
O2-C1	1.248 (2)	C4-C4 ⁱ	1.416 (4)
N1-C7	1.495 (3)	C5-C6	1.364 (3)
N1-C10	1.491 (3)	$C6-C4^{i}$	1.396 (3)
C1-C2	1.509 (3)	C7-C8	1.504 (3)
C2-C3	1.349 (3)	C7-C9	1.505 (3)
C2-C5	1.402 (3)	C10-C11	1.505 (3)
C3-C4	1.424 (3)	C10-C12	1.518 (3)
C7-N1-C10	117.7 (2)	$C4^{i}-C4-C3$	117.7 (2)
O1-C1-O2	125.4 (2)	C6-C5-C2	120.9 (2)
O1-C1-C2	117.5 (2)	$C5 - C6 - C4^{i}$	121.0 (2)
O2-C1-C2	117.1 (2)	N1-C7-C8	110.9 (2)
C3-C2-C5	119.2 (2)	N1-C7-C9	107.9 (2)
C3-C2-C1	121.4 (2)	C8-C7-C9	112.2 (2)
C5-C2-C1	119.5 (2)	N1-C10-C11	111.4 (2)
C2-C3-C4	122.1 (2)	N1-C10-C12	107.5 (2)
$C6^{i} - C4 - C4^{i}$	119.2 (2)	C11-C10-C12	111.0 (2)
$C6^{i}-C4-C3$	123.1 (2)		

Symmetry code: (i) 1 - x, 1 - y, 1 - z.

Table 2

Hyd	rogen-	bonding	g geom	etry (A	, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N1 - H1n1 \cdots O1$	0.90	1.82	2.716 (2)	173
$N1 - H1n2 \cdots O2^{i}$	0.87	1.88	2.746 (2)	169

Symmetry code: (i) -x, 1 - y, -z.

The ammonium H atoms were located and refined subject to the restraint N-H 0.86 (1) Å. The aliphatic and aromatic H atoms were positioned geometrically (C-H 0.93 Å for the aromatic H atoms, C-H 0.98 Å for the methine H atom and C-H 0.96 Å for the methyl H atoms), and were included in the refinement in the riding model

Figure 1

ORTEPII (Johnson, 1976) view of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

Figure 2

ORTEPII (Johnson, 1976) drawing, illustrating the hydrogen-bonded chain structure.

approximation; their respective displacement factors were set to 1.2, 1.2 and 1.5 times U_{eq} of the parent C atom.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

The author thanks Xiamen University for the diffraction facilities, and the University of Malaya for supporting this work.

References

- Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
- Kaduk, J. A. & Golab, J. T. (1999). Acta Cryst. B55, 85-94.
- Ng, S. W. (1993). J. Cryst. Spectrosc. Res. 23, 73-75.
- Ng, S. W. (1995). Malays. J. Sci. 16B, 45-47.
- Ng, S. W. (1996). Acta Cryst. C52, 181-183.
- Ng, S. W. (1997). Acta Cryst. C53, 779-781.
- Ng, S. W., Chantrapromma, S., Ibrahim, A. R. & Fun, H.-K. (2001). Acta Cryst. C57, 291–292.
- Ng, S. W., H.-K. Fun & Shanmuga Sundara Raj, S. (1999). Acta Cryst. C55, 2145–2147.
- Ng, S. W. & Hook, J. M. (1999). Acta Cryst. C55, 312-316.
- Sheldrick, G. M. (1997). *SHELXS*97 and *SHELXL*97. Release 97-2. University of Göttingen, Germany.
- Subramanian, R. R., Anandan, S. S., Kwek, K. H., Low, K. S., Shanmuga Sundara Raj, S., Fun, H.-K., A. Razak, A. I., Hanna, J. V. & Ng, W. (2000). *Acta Cryst.* C56, e292–e294.
- Yang, Y. Y., Chen, X. M. & Ng, S. W. (2000). Acta Cryst. C56, e111-e112.